INTERNATIONAL ISO/IEC
STANDARD 8652

Second edition
1995-02-15

Information technology — Programming
languages — Ada

Technologies.de./'information —/Langages de programmation — Ada

ISO 1EC

° Reference number
ISO/IEC 8652:1995(E)

ISONEC 8652:1995(E)

Contents
FOTOWOTA ...oooeeeeeeeeeeeeeeeeeitiee et ettt e e aeeeeeaeere e e s eaa e aneeeeaerrnseessasaressesnassnnnssernnnnsnnesreess
Fi i ge e LTLox (1o) 1 TRUUURUURU OO

T 11 £ LITTETTT U TOro PP

11 SO P .. i e
8 I T T 3« . £
1.1 2 S UG UI® e e
1.1.3 Conformity of an Implementation withtheStandard
1.1.4 Method of Description and Syntax Notation
1.1.5Classification of Errors e e

1.2Normative References e D

1.3 DefinitioNs i AN

D, LeXiCAl EIOMIBNES ..oooeeeeeieeieeeeeieeeetieeereeiiseetestenrtnesscesssssssnsrsasssnesseerioshoiessassiusnots

2 1 ChaIBCIBr SO e e N e e e
2.2 Lexical Elements, Separators, and DelimitersC .. o000
D B Identifiors e e e e e R e e
2ANuUmeric LIterals ... e A e e s e

241 Decimal Literals T e e N et e e e

242Bagsed Literals e The e e
25CharacterLiterals il e
26StringLiteralsl i e
27ComMmMeNnts e e N e
2B Pragmas e e e e e ettt
2.9 RESEOIVed WOTASottt e it e rs ers e mtaeneeeeeeeaeeeens

3. Declarations and TYPeScoccviithiiiimiii i St

31Declarations 0 0 ... e et Y e i e
32Typesand Subtypes 0 i i e i e e
321 TypeDeclarations/. i i e e
3.22SubtypeDeclarations e
3.2.3 Classificationof Operations i
3.3 Objects and Named Numbers0 i i
3.3.1ObjectDeclarations. 0 . .. i e
3.3.2NumberDeclarations
3.4 Derived Types and Classes e e
3.4.1Derivation Classesttt

© ISO/IEC 1995

All nghts reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfiim, without permission in writing from the publisher.

ISONEC Copyright Office ® Case Postale 56 ¢ CH-1211 Genéve 20 ® Switzerland
Printed in Switzerland

X x

O VDO ~NNHEN = -

ISONEC 8652:1995(E)

3.5 Scalar TYPOS e 32
351 Enumeration Types e 36
3.5 2Character TypPeso 37
353Boolean Types, 38
354integer Types 38
3.5.5 Operations of Discrete Types 41
356 Real Types 42
35.7Floating Point Types 43
3.5.8 Operations of FloatingPoint Types 44
359FixedPoint Types 45
3.5.10 Operations of Fixed Point Types 47

BB AMAY TYPOS e e 48
3.6.1 Index Constraints and Discrete Ranges, 50
3.6.20perations of Array Types i 51
36.3Sting TYPeso T 52

37Discriminants N e e 52
3.7.1 DiscriminantConstraints 00 e, 55
3.7.2 Operations of Discriminated Types 0 s e, 56

38Record Types e e e e N e 56
3.8.1 Variant Parts and Discrete Choices 0.... 0 59

3.9 Tagged Types and Type Extensions L. 0 v dennnennn... 60
39.1TypeExtensions 0 . i e e 62
3.9.2 Dispatching Operations of Tagged Types (. 63
3.9.3 Abstract Types and Subprograms /. /i . i e 65

3.10AccessTypes0 0 ... 00 e e 67
3.10.1 incomplete Type Declarations 69
3.10.2 Operations of Access Types ittt 70

3. 11 Declarative Parts0 o i e e 73
3.11.1 Completions of Declarations 74

4. Names and EXPressions i..ciii it es s anes 75

T I 7 T - T 75
4.1.1Indexed Components ol e 76
e B 77
4.1.3 Selected Components i e e 78
414 ARI DUtES i e e it 79

42 Literals a0l e e e et et 80

A3 AQOregates i e e e et et e i 81
43.1Record Aggregates it e 82
432 Extension Aggregatest it 83
433 Array Aggregates 84

B A EXPrOS S ONS e e et e 87

4.5 Operators and Expression Evaluation, 88
4.5.1 Logical Operators and Short-circuitControtForms 89
4.5.2 Reiational Operators and MembershipTests 20
453 Binary AddingOperators i, 93
454 Unary Adding Operators0 iiiitiiiii it 94
4.5.5 MultiplyingOperators e 94
4.5.6 Highest Precedence Operators0....¢cciiiirirnnnnnnnnnnn. 96

46 TYype COoNVerSIONS it i i e e 97

4.7 Qualifled EXPressions i ittt et e e e 101

4B AHOCAtONS e e ettt 102

4.9 Static Expressions and StaticSubtypes 103
4.9.1 Statically Matching ConstraintsandSubtypes 105

ISONEC 8652:1995(E)

B StALOIMIONES . ooeoiveeeeeeeee ittt e e e et e e e e ee ettt et e eeeae e teseae e teeeeesearnaaeeeeaasrenessaans 107
5.1 Simple and Compound Statements - Sequences of Statements 107
5.2 Assignment Statements, 108
53IfStatements e e e 110
5.4 Case Statements 110
5.5LoopStatements 112
5.6 Block Statements e 113
5.7 EXit StatemMents e 114
5.8 GOto Statements 115

6. SUDProgramscccccceiiiiiiiiiiicc 117
6.1 Subprogram Declarations 117
6.2 Formal Parameter Modes T 119
6.3 SubprogramBodies N 120

6.3.1 ConformanceRules4 0 oo 121
6.3.2 Inline Expansion of Subprograms oo 122
6.4Subprogram Callsl 123
6.4.1 Parameter Associations0 i e 124
6.5ReturnStatements N e 125
6.6 Overloadingof Operators< . . 0o i hennenn.. 127

T.PACKAQGESccooinnieiiiee ittt sesee e e e e s sse e e eeesrne s rnsaeesh e e e dnee e e eeseeneeeenans 129
7.1 Package Specifications and Declarations o .. o 129
7.2PackageBodies e e 130
7.3 Private Types and Private Extensions..0 00 ..o i, 131

7.3.1 PrivateOperations<.... 0o 133
74DeferredConstants 00 .. e e 135
7.5 Limited Types e e 136
7.6 User-Defined Assignment and Finalization 137

7.6.1 Completion and Finalizationo/ 139

8. Visibility Rules ...l i e et 143
8.1 Declarative Region | (i v i o 143
8.2 Scope of Declarations .-/ i e 144
8.3 Visibility e i 145
B.4UsSe Clauses i i e 147
8.5 Renaming Declarations 0. . 148

8.5.1 Object Renaming Declarations e e e 148
8.5.2 Exception Renaming Declarations 149
8.5.3 Package Renaming Declarations 149
8.5.4 Subprogram Renaming Declarations 150
8.5.5 Generic Renaming Declarations 151
8.6 The Contextof Overload Resolution 151

9. Tasks and Synchronizationc.c.ccooiiiiiiiie e, 155
9.1 Task Units and TaskObjects e e 155
9.2 Task Execution - Task Activation 157
9.3 Task Dependence - Terminationof Tasks 158
9.4 Protected Units and ProtectedObjects 159
95 Intertask Communication 162

9.5.1 Protected Subprograms and Protected Actions 163

9.5.2 Entries and AcceptStatements, 164

9.8 3ENtry Calls e 167

9.54RequeueStatements 169
9.6 Delay Statements, Duration,and Time, 171
9.7Select Statements 173

ISONEC 8652:1995(E)

9.7.1Selective Accept 174
9.72TimedEntry Calls 176
9.7.3ConditionalEntry Calls 176
9.7.4 Asynchronous TransferofControl 177

9.8 Abort of a Task - Abort of a Sequenceof Statements 178
9.9 Taskand Entry Attributes 179
9.10Shared Variables 180
9.11 Example of Tasking and Synchronization 181
10. Program Structure and Compilationissuesccooiviviinnnn 183
10.1 Separate Compilation 183
10.1.1 Compilation Units - LibraryUnits 183
10.1.2 Context Clauses - WithClauses 186
10.1.3 Subunits of Compilation Units/ .. ~.... 186
10.1.4 The CompilationProcess 0 . .. 188
10.1.5 Pragmas and Program Unitso ... 5w ... 189
10.1.6 Environment-Level Visibility Rules0 190
10.2ProgramExecution e L 191
10.2.1 Elaboration Control e 193
T1.EXCOPIONS ... et e e ee b ar e e 195
11.1 Exception Declarations o b N e e 195
11.2Exception Handlers /i i e e e 195
11.3RaiseStatements e e 196
11.4 ExceptionHandiing ' NN AT N N 197
11.4.1 The Package Exceptions /.. o . . /.) /e 197
11.4.2 Example of ExceptionHandling 199
11.5SuppressingChecks 0 . . . i i i 200
11.6 Exceptions and Optimization0 . . 0 i 202
12. GeneriC UNitS ... i et rre e e e e e s e e e s benae e e e e e 205
12.1 Generic Declarations . . /. .. . 0. o i e e 205
122GenericBodies i e 206
12.3 GenericInstantiation 0 o 207
124 Formal Objects i i e e 210
12 5 Formal Types i i i e e e 211
12.5.1 Formal Private and Derived Typeso, 212
12.5.2 Formal Scalar Types P 213
12.5.3Formal Array Types . ./ e e 214
1254 Formal Access Types i 215

12.6 Formal Subprograms i 215
12,7 Formal Packages i i et e e e 217
12.8ExampleofaGenericPackage, 217
13. Representation ISSUES ...t 219
13.1 Representationitems 219
13 2 Pragma Pack e e 221
13.3 Representation Attributes 222
13.4 Enumeration RepresentationClauses 227
13.5Record Layout e e 228
13.5.1 Record RepresentationClauses 228
13.5.2 Storage Place Attributes 230
1353BitOrdering 230
13.6Changeof Representation ittt iirienennnnnans 231
13.7 The Package System i e 232
13.7.1 The Package System.Storage_Elements 234

ISONEC 8652:1995(E)

13.7.2 The Package System.Address_To_Access_Conversions 234

13.8 Machine Codelinsertions, 235
13.9 Unchecked Type Conversions iiuiniiiniinnin.. 236
1391 DataValidity 237
13.92TheValidAttribute 238
13.10 Unchecked Access Value Creation 238
13.11 Storage Management 239
13.11.1 The Max_Size_In_Storage_Elements Aftribute 242
13.11.2 Unchecked Storage Deallocation 242
13.11.3PragmaControlled 243
13.12 PragmaRestrictions L 243
18,13 8traMS e 244
13.13.1ThePackage Streams 244
13.13.2 Stream-Oriented Attributes/ 245
13.14 FreezingRules A 247

ANNEXES

A. Predefined Language Environmentcc.. it e, 251
AlThePackageStandard ¢ . . . o ool 252
A2ThePackage Ada i i@y i, 255
A3dCharacterHandling et e e e 255
A3.1ThePackageCharacters/ i, 258
A.3.2 The Package Characters.Handling. 0. 2568
A.3.3 The Package Characters.Latin_10 .. 0 . /. i i, 258
AdStringHandling T i e e e 262
A4 1ThePackage Strings oo . et et 263
A.4.2 The Package Strings.Maps00 . i 263
A.43Fixed-LengthStringHandling (... 266
A.4.4 Bounded-Length StringHandling 273
A.4.5 Unbounded-Length StringHandling 278
A.4.6 String-Handling SetsandMappings ,............... 283
A4 7 Wide_StringHandling 0 . .. e 283
ASThe Numerics Packages ittt ittt it ittt 285
AS.d Elementary Functions e e 286
A.5.2 Random Number Generation’, 289
A.5.3 Atiributes of FloatingPoint Types v, 293
A.5.4 Attributes of FixedPointTypes 297

A INPUL UL PUL . .. e e 297
A.7 External Filesand FileObjects 298
A.8 Sequentialand DirectFiles 299
A.8.1 The Generic Package Sequential 10 299
AB8.2FileManagement, 300
A.8.3 Sequential Input-OutputOperations 302
A.8.4 The Generic Package Direct_I0 .. 303
A.8.5 Direct Input-OutputOperations 304

A.9 The Generic Package Storage_100t iiiiiiienirnenennns 305
A0 Textinput-Output e i 305
Al0.1ThePackage Text IO0ttt iiiitatannannnn 307
At02TextFileManagement it iiiunenenennnnnennnn 3an
A.10.3 Defauit Input, Output, and ErrorFiles 312
A.10.4 Specificationof Lineand PageLengths 313

vi

ISONEC 8652:1995(E)

A.10.5 Operations on Columns, Lines,andPages 314

A. 106 Getand Put Procedures it 317
A.10.7 Input-Output of Charactersand Strings 318
A.10.8 input-Output forinteger Types 320
A.10.9 Input-OutputforReal Types i, 322
A.10.10 input-Output for Enumeration Types 325
A 11 Wide Textinput-Output e 326
A12Stream input-Output 326
A.12.1 The Package Streams.Stream_10 i, 326
A.12.2 The Package Text_IO.Text Streams 328
A.12.3 The Package Wide_Text_|0.Text Streams 329
A.13 Exceptions ininput-Output 329
A4 File Sharing e 330
A.15 The Package Command_Line /.. 0. 331
B. Interface to Other Languagesccccooiirriiiniii vl femae e e e e 333
B.linterfacingPragmaso G i e 333
B.2ThePackageinterfaces00 onan. 336
B3InterfacingwithC i e 337
B.3.1 The Package Interfaces.C.Strings00 oo, 341
B.3.2 The Generic Package Interfaces.C.Pointers . <.0..vivinn.. 344

B4 interfacingwithCOBOL oL et 347
BSinterfacingwith Fortran/ i . vl 353
C. Systems Programming...........cccocovviinimiiinithonmnn it 357
C.1 Access to Machine Operations L. oo odi oo, 357
C.2 Required Representation Support i 358
C3interrupt SUPPOIt e e e 358
C.3.1 Protected Procedure Handlers oo, 360
C.3.2ThePackageInterrupts ittt i, 362

C.4 Preelaboration Requirements00 . i 364
C.5PragmaDiscard_Names 0 ..l it i 365
C.6Shared Variable Control o i i e 365
C.7 Task Identificationand Attributes il 367
C.7.1 The Package Task_identification>. 367
C.7.2 The Package Task_Aftributes i, 368

D. Real-Time SyStems .../ i i 3N
D.1 Task Priofitles i e e e KYa
D.2PriorityScheduling e e 373
D.2.1 The Task DispatchingModel 373
D.2.2 The Standard Task DispatchingPolicy 375
D3PriorityCellingLocking i 376
D4EntryQueuingPolicies e 378
DSDynamicPriorities e 379
D6 Preemplive Abort i 380
D.7 TaskingRestrictions i 381
DB MoNOtoNIC TIMe it ittt ittt 382
DODElay ACCUIACYottt ittt ta st aennaaneaennaannannns 386
D.10 Synchronous TaskControl it e 387
D.11 Asynchronous TaskControl e 387
D.12 Other Optimizations and DeterminismRules 388
E. Distributed Systemsccocviiiiniiniiiin 391
B PartitloNS i et i e e 391
E.2 Categorizationof LibraryUnits i, 393

vii

ISONEC 8652:1995(E)

E.2.1 Shared Passive Library Units 394
E22Remote Types Library Units 394

E.2.3 Remote Call Interface Library Units 395

E.3 Consistency of a Distributed System 396
E.4 Remote Subprogram Calls 397
E.4.1 Pragma Asynchronous i, 398

E.4.2 Example of Use of a Remote Access-to-Class-Wide Type 399

E.5 Partition Communication Subsystem 401

F. Information SystemsS.............coiii e 403
F.1 Machine_Radix Attribute DefinitionClause 403
F.2The Package Decimal i 404
F.3 Edited Outputfor Decimal Types 405
F.3.1 Picture String Formation 406

F.3.2 Edited Output Generation 0L 409

F.3.3 The Package Text_IO.Editing 414

F.3.4 The Package Wide_Text_I0.Editingo .. . 0.0y 417

G NUIMEBLICS ...ttt ree s raeeeereesesae e s ras e n e b s beeesesbeennte 419
G.1 Complex Arithmetic il 419
G.1.1ComplexTypes i e e 419

G.1.2 Complex Elementary Functions o Lo 424
G.1.3ComplexInput-Output 0 i e e 427

G.1.4 The Package Wide_Text_1I0.Complex_10 (./ 429

G.2 Numeric Performance Requirements 0./ . .. i, 430
G.2.1 Model of Floating Point ArithmeticL. 430

G.2.2 Model-Oriented Attributes of Floating PointTypes 431

G.2.3 Model of Fixed Point Arithmetic.. L 432

G.2.4 Accuracy Requirements for the Elementary Functions 434

G.2.5 Performance Requirements for Random Number Generation 436

G.2.6 Accuracy Requirements for Complex Arithmetic 436

H. Safety and SeCUrity.............ilecr ottt 439
H.1 Pragma Normalize_Scalars o0 . 439
H.2 Documentation of ImplementationDecisions 440
H.3 Reviewable Object Code00 . . 440
H3.1PragmaReviewable 440

H.3.2 Pragma Ingpection_Point 441

H.4 Safety and Security Restrictions . /. 442

J. Obsolescent Featurescccccveeiveiiiiiiiicieecccec e setne e 445
J.1 Renamings of Ada83 LibraryUnits 445
J.2 Allowed Replacementsof Characters 445
J.3 Reduced Accuracy Subtypes 446
J4TheConstrained Attribute 446
B ASCI . 447
JONUMBIIC _EITOr i e e 447
JT AL ClaUSeS 447
J71interruptEntries e 448
JBMod Clauses 449
J.9The Storage_Size Attribute 449

K. Language-Defined Attributes.....................c.cccoiinininiiniece e 451
L. Language-Defined Pragmas.................cccccrviiniiniininniinnicecesseeseeecs e sne s 465

viil

ISONEC 8652:1995(E)

M. Implementation-Defined Characteristics.................cccoeoovniiiiiiincnnee. 467
N, GIOSSANY.....coeiiuiiieeitiitie e 473
P. SYNtaX SUMMAIYcoooemmieiscrrieriie ittt 477
13 Yo (=) STURUT TR PPN eeeerttreeeeteeerieeetreeeretreetaaneerrneateraeaarans 501

ix

ISONEC 8652:1995(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-
mission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees es-
tablished by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft Intemnational Standards adopted by the joint technical committee are circulated to
national bodies for voting. Publication as an International Standard requires approval by atleast 75 % of
the national bodies casting a vote.

International Standard ISO/IEC 8652 was prepared by Joint Technical -Committee ISO/EC JTC 1,
Information Technology.

This second edition cancels and replaces the first edition (ISO 8652:1987), of which it constitutes a
technical revision,

Annexes A to J form an integral part of this International Standard. Annexes K to P are for information
only.

Foreword

ISONEC 8652:1995(E)

Introduction
This is the Ada Reference Manual.

Other available Ada documents include:

e Rationale for the Ada Programming Language — 1995 edition, which gives an introduction
to the new features of Ada, and explains the rationale behind them. Programmers should
read this first.

e Changes to Ada — 1987 to 1995. This document lists in detail the changes made to the 1987
edition of the standard.

¢ The Annotated Ada Reference Manual (AARM). The AARM contains all of the text in the
RMOS, plus various annotations. It is intended primarily for compiler writers, validation test
writers, and others who wish to study the fine details. The annotations include detailed
rationale for individual rules and explanations of some of the more arcane interactions among
the rules.

Design Goals

Ada was originally designed with three overriding concerns: program reliability ‘and maintenance, pro-
gramming as a human activity, and efficiency. This revision to the language was designed to provide
greater flexibility and extensibility, additional control over storage management and synchronization, and
standardized packages oriented toward supporting important application areas, while at the same time
retaining the original emphasis on reliability, maintainability, and efficiency.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the language
require that program variables be explicitly declared and that their type be specified. Since the type of a
variable is invariant, compilers can ensure that operations on variables are compatible with the properties
intended for objects-of the type. Furthermore, error-prone notations have been avoided, and the syntax of
the language avoids the use of‘encoded forms in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the same degree of checking between units as within a
unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was made
to keep to-a relatively small number of underlying concepts integrated in a consistent and systematic way
while continuing to avoid the pitfalls of excessive involution. The design especially aims to provide
language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized and
distributed. Consequently, the ability to assemble a program from independently produced software
components continues to be a central idea in the design. The concepts of packages, of private types, and
of generic units are directly related to this idea, which has ramifications in many other aspects of the
language. An allied concern is the maintenance of programs to match changing requirements; type exten-
sion and the hierarchical library enable a program to be modified while minimizing disturbance to exist-
ing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or
that lead to the inefficient use of storage or execution time, force these inefficiencies on all machines and
on all programs. Every construct of the language was examined in the light of present implementation

Introduction
xi

ISONEC 8652:1995(E)

techniques. Any proposed construct whose implementation was unclear or that required excessive
machine resources was rejected.

Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms (which
define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms). Each
program unit normally consists of two parts: a specification, containing the information that must be
visible to other units, and a body, containing the implementation details, which need not be visible to
other units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries.. All-libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into individual
components. The text of a separately compiled program unit must name the library units it requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It -may have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define-a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification. c

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently
with those of other tasks. Such tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task or a
task type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data shared
between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing protocols
can be defined. A protected operation can either be a subprogram or an entry. A protected entry specifies
a Boolean expression (an entry barrier) that must be true before the body of the entry is executed. A
protected unit may define a single protected object or a protected type permitting the creation of several
similar objects.

Declarations and Statements

Introduction
xil

ISONEC 8652:1995(E)

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the

program unit.

The declarative part associates names with declared entities. For example, a name may denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless a transfer of control causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
that a sequence of statements is to be executed repeatedly as directed by an itération scheme, or until an
exit statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities used
by the statements.

Certain statements are associated with concurrent execution. ‘A delay statement delays the execution of a
task for a specified duration or until a specified time. \An entry call statement is written as a procedure
call statement; it requests.an operation on a task or on a protected object, blocking the caller until the
operation can be performed. ‘A called task may accept an entry call by executing a corresponding accept
statement, which specifies the actions then to be performed as part of the rendezvous with the calling task.
An entry call on a protected object.is processed when the corresponding entry barrier evaluates to true,
whereupon the body of the entry is executed. The requeue statement permits the provision of a service as
a number of related activities with preference control. One form of the select statement allows a selective
wait for one of several alternative rendezvous. Other forms of the select statement allow conditional or
timed entry calls and the asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the statements of a program unit can be textually followed by exception handlers
that specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by
a raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and ac-
cess types) and composite types (including array and record types).

Introduction
xiii

ISO/NIEC 8652:1995(E)

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or
an alphabet of characters. The enumeration types Boolean, Character, and Wide_Character are

predefined.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an object with indexed components of the same
type. A record is an object with named components of possibly different types. Task and protected types
are also forms of composite types. The array types String and Wide_String are predefined.

Record, task, and protected types may have special components called discriminants which parameterize
the type. Variant record structures that depend on the values of discriminants can be defined within a
record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator. Several
variables of an access type may designate the same object, and components of one object may designate
the same or other objects. Both the elements in such linked data structures-and their relation to other
elements can be altered during program execution. “Access types also permit references to subprograms to
be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A (private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details that
are externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both direct
and indirect) form a denivation class. Class-wide operations may be defined that accept as a parameter an
operand of any type in a derivation class. For record and private types, the derivatives may be extensions
of the parent type. Types that support these object-oriented capabilities of class-wide operations and type
extension must be tagged, so that the specific type of an operand within a derivation class can be iden-
tified at run time. ‘"When an operation of a tagged type is applied to an operand whose specific type is not
known until run time, implicit dispatching is performed based on the tag of the operand.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the set
of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Representation clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a given
number of bits, or that the components of a record are to be represented using a given storage layout.
Other features allow the controlled use of low level, nonportable, or implementation-dependent aspects,
including the direct insertion of machine code.

Introduction
xiv

ISONEC 8652:1995(E)

The predefined environment of the language provides for input-output and other capabilities (such as
string manipulation and random number generation) by means of standard library packages. Input-output
is supported for values of user-defined as well as of predefined types. Standard means of representing
values in display form are also provided. Other standard library packages are defined in annexes of the
standard to support systems with specialized requirements.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and packages)
and so allow general algorithms and data structures to be defined that are applicable to all types of a given
class.

Language Changes
This International Standard replaces the first edition of 1987. In this edition, the following major lan-
guage changes have been incorporated:

o Support for standard 8-bit and 16-bit character sets. See Section 2, 3.5.2,3.6.3, A.1, A3, and
A4,

e Object-oriented programming with run-time polymorphism. See the discussions of classes,
derived types, tagged types, record extensions, and private extensions in clauses 3.4, 3.9, and
7.3. See also the new forms of generic formal parameters that are allowed by 12.5.1, *‘For-
mal Private and Derived Types’’ and 12.7, ‘‘Formal Packages’™.

e Access types have been extended to allow an access value to designate a subprogram or an
object declared by an object declaration (as opposed to just a heap-allocated object). See
3.10.

« Efficient data-oriented synchronization is-provided via protected types. See Section 9.

e The library units of alibrary may be organized into a hierarchy of parent and child units. See
Section 10.

e Additional support has been added for interfacing to other languages. See Annex B.

e The Specialized Needs Annexes have been added to provide specific support for certain
application areas:
* Annex C, “‘Systems Programming’’

* Annex D, “‘Real-Time Systems’’

¢ Annex E, “‘Distributed Systems’’
* Annex F, “‘Information Systems’’
* Annex G, ‘‘Numerics’’

* Annex H, ‘‘Safety and Security’’

Introduction
XV

ISONEC 8652:1995(E)

Instructions for Comment Submission

Informal comments on this International Standard may be sent via e-mail to ada-comment@sei.cmu.edu. If
appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

!topic Title summarizing comment
!reference RM95-ss.ss(pp)

!from Author Name yy-mm-dd
!keywords keywords related to topic
!discussion

text of discussion

where ss.55 is the section, clause or subclause number, pp is the paragraph number where applicable, and
yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

Multiple comments per e-mail message are acceptable. Please use a descriptive *‘Subject’’ in your e-mail
message.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:

ttopic [c]{C}haracter
!topic it[’]s meaning is not defined

Formal requests for interpretations and for reporting defects in this International Standard may be made in
accordance with the ISO/IEC JTC 1 Directives.and the ISO/IEC JTC 1/SC 22 policy for interpretations.
National Bodies may/submit a Defect Report. to ISO/IEC JTC 1/SC 22 for resolution under the JTC 1
procedures. A response will be provided and, if appropriate, a Technical Corrigendum will be issued in
accordance with the procedures.

Introduction
xvi

|NTERNAT|ONAL STANDARD ISONEC 8652:1995(E)

Information technology — Programming
languages — Ada

Section 1: General

Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
. operations. The packages may be parameterized and the types may be extended to support the construc-
tion of libraries of reusable, adaptable software components. The operations may be implemented as
subprograms using conventional sequential control structures, or as entries that include synchronization
of concurrent threads of control as part of their invocation. The language treats modularity in the physical
sense as well, with a facility to support separate compilation.

The language includes a complete facility for the support of real-time, concurrent programming. Errors
can be signaled as exceptions and handled explicitly. The language also covers systems programming;
this requires precise control over the representation of data and access to system-dependent properties.
Finally, a predefined environment of standard packages is provided, including facilities for, among
others, input-output, string manipulation, numeric elementary functions, and random number generation.

1.1 Scope
This International Standard specifies the form and meaning of programs written in Ada. Its purpose is to
promote the portability of Ada programs to a variety of data processing systems.

1.1.1 Extent
This International Standard specifies:

¢ The form of a program written in Ada;

o The effect of translating and executing such a program;

General 1

ISONEC 8652:1995(E)

e The manner in which program units may be combined to form Ada programs;
e The language-defined library units that a conforming implementation is required to supply;

e The permissible variations within the standard, and the manner in which they are to be
documented;

e Those violations of the standard that a conforming implementation is required to detect, and
the effect of attempting to translate or execute a program containing such violations;

e Those violations of the standard that a conforming implementation is not required to detect.

This International Standard does not specify:

¢ The means whereby a program written in Ada is transformed into object code executable by a
processor;

¢ The means whereby translation or execution of programs is invoked and the executing units
are controlled;

o The size or speed of the object code, or the relative execution speed of different language
constructs;

¢ The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

o The effect of unspecified execution.

» The size of a program or program unit that will exceed the capacity of a particular conform-
ing implementation.

1.1.2 Structure
This International Standard contains thirteen sections, fourteen annexes, and an index.

The core of the Ada language consists of:
e Sections 1 through 13

e Annex A, ‘‘Predefined Language Environment’’
¢ Annex B, ‘‘Interface to Other Languages’’
¢ Annex J, ‘‘Obsolescent Features™’

The following Specialized Needs Annexes define features that are needed by certain application areas:
¢ Annex C, *‘Systems Programming’’

¢ Annex D, ‘‘Real-Time Systems’’

e Annex E, ‘‘Distributed Systems’’

¢ Annex F, ‘‘Information Systems’’
¢ Annex G, ‘‘Numerics”’

¢ Annex H, ‘‘Safety and Security’’

The core language and the Specialized Needs Annexes are normative, except that the material in each of
the items listed below is informative:

e Text under a NOTES or Examples heading.

1.11 Extent

ISONEC 8652:1995(E)

o Each clause or subclause whose title starts with the word ‘‘Example’’ or ‘‘Examples’’.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

The following Annexes are informative:
¢ Annex K, ‘‘Language-Defined Attributes’’

e Annex L, ‘‘Language-Defined Pragmas”’
¢ Annex M, ‘‘Implementation-Defined Characteristics’’
¢ Annex N, ‘‘Glossary”’
¢ Annex P, ‘‘Syntax Summary”’
Each section is divided into clauses and subclauses that have a common structure. Each section, clause,

and subclause first introduces its subject. After the introductory text, text is labeled with the following
headings:

Syntax

Syntax rules (indented).

Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules
Rules that are enforced at compile time. A constructiis legal if it obeys all of the Legality Rules.

Static Semantics
A definition of the compile-time effect of each construct.

Post-Compilation Rules
Rules that are enforced before running a partition. A partition is legal if its compilation units are legal
and it obeys all of the Post-Compilation Rules.

Dynamic Semantics
A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors
Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution
Situations that result in erroneous execution (see 1.1.5).

1 s P,
e 4 L4

Additional requirements for conforming implementations.

Doc ion R

Requir

Documentation requirements for conforming implementations.

Metrics

Metrics that are specified for the time/space properties of the execution of certain language constructs.

Structure 1.1.2

ISONEC 8652:1995(E)

Implementation Permissions

Additional permissions given to the implementer.

Implemeniation Advice
Optional advice given to the implementer. The word ‘‘should’’ is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given recommen-
dation is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples
Examples illustrate the possible forms of the constructs described. This material is informative.

1.1.3 Conformity of an Implementation with the Standard
Impl jon Requir

k2

A conforming implementation shall:

 Translate and correctly execute legal programs written in Ada, provided that they are not so
large as to exceed the capacity of the implementation;

e Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

o Identify all programs or program units that contain errors whose detection is required by this
International Standard;

e Supply all language-defined library units required by this International Standard;

¢ Contain no variations except those explicitly permitted by this International Standard, or
those that are impossible or impractical to avoid given the implementation’s execution en-
vironment;

e Specify all such variations inthe manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
external environment. The following are defined as external iriteractions:

¢ Any interaction with an external file (see A.7);

o The execution of certain code_statements (see 13.8); which code_statements cause external
interactions is implementation defined.

e Any call on an imported subprogram (see Annex B), including any parameters passed to it;

e Any result returned or exception propagated from a main subprogram (see 10.2) or an ex-
ported subprogram (see Annex B) to an external caller;

e Any read or update of an atomic or volatile object (see C.6);
o The values of imported and exported objects (see Annex B) at the time of any other inter-
action with the external environment. :

A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the external environment whose order and timing are consistent
with the definitions and requirements of this International Standard for the semantics of the given

program.

1.1.2 Structure

ISONIEC 8652:1995(E)

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to one
or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex means that
each capability required by the Annex is provided as specified.

An implementation conforming to this International Standard may provide additional attributes, library
units, and pragmas. However, it shall not provide any attribute, library unit, or pragma having the same
name as an attribute, library unit, or pragma (respectively) specified in a Specialized Needs Annex unless
the provided construct is either as specified in the Specialized Needs Annex or is more limited in
capability than that required by the Annex. A program that attempts to use an unsupported capability of
an Annex shall either be identified by the implementation before run time or shall raise an exception at
run time.

Doc ion Requir
Certain aspects of the semantics are defined to be either implementation defined or unspecified. In such
cases, the set of possible effects is specified, and the implementation may choose any effect in the set.
Implementations shall document their behavior in implementation-defined situations, but documentation
is not required for unspecified situations. The implementation-defined characteristics are summarized in
Annex M.

The implementation may choose to document implementation-defined behavior either by documenting
what happens in general, or by providing some mechanism for the user'to determine what happens in a
particular case.

Implementarion Advice
If an implementation detects the use of an unsupported Specialized Needs Annc« feature at run time, it
should raise Program_Error if feasible.

If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implémentation conforming to this Standard may support some of the capabilities
required by a Specialized Needs Annex without supporting all required capabilities.

1.1.4 Method of Description and Syntax Notation
The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of each
construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:
e Lower case words in a sans-serif font, some containing embedded underlines, are used to
denote syntactic categories, for example:

case_statement
¢ Boldface words are used to denote reserved words, for example:
array

Conformity of an Implementation with the Standard ~ 1.1.3
5

ISONEC 8652:1995(E)

e Square brackets enclose optional items. Thus the two following rules are equivalent.

return_statement ::= return [expression};
return_statement ::= return; | return expression;

o Curly brackets enclose a repeated item. The item may appear zero or more times; the repeti-
tions occur from left to right as with an equivalent left-recursive rule. Thus the two follow-

ing rules are equivalent.

term ::= factor { multiplying_operator factor}
term ::= factor | term multiplying_operator factor

e A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

e If the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey some
semantic information. For example subtype_name and task_name are both equivalent to
name alone.

A syntactic category is a nonterminal in the grammar defined in BNF under ‘‘Syntax.”” Names of
syntactic categories are set in a different font, like_this.’

A construct is a piece of text (explicit or implicit) that is\an instance of a syntactic category defined under
“‘Syntax.”’

A constituent of a construct is the construct itself, or any construct appearing within it.

Whenever the run-time semantics defines certain actions to happen in an arbitrary order, this means that
the implementation shall arrange for these actions to occur in a way that is equivalent to some sequential
order, following the rules that result from that sequential order. When evaluations are defined to happen
in an arbitrary order, with conversion of the results to some subtypes, or with some run-time checks, the
evaluations, conversions, and checks may be arbitrarily interspersed, so long as each expression is
evaluated before converting or checking its value. Note that the effect of a program can depend on the
order chosen by the implementation. This can happen, for example, if two actual parameters of a given
call have side effects:

NOTES
3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended

paragraphing. For example, an-if_statement is defined as:
if_statement ::=

if condition then
sequence_of_statements

{elsif conditon then
sequence_of_statements)

{else
sequence_of_statements

end if; :

4 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.4 Method of Description and Syntax Notation
6

ISONEC 8652:1995(E)

1.1.5 Classification of Errors

Implementation Requirements
The language definition classifies errors into several different categories:
¢ Errors that are required to be detected prior to run time by every Ada implementation;

These errors correspond to any violation of a rule given in this International Standard, other
than those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error
is not a legal Ada program; on the other hand, the fact that a program is legal does not mean,
per se, that the program is free from other forms of error.

The rules are further classified as either compile time rules, or post compilation rules,
depending on whether a violation has to be detected at the time a compilation unit is sub-
mitted to the compiler, or may be postponed until the time a compilation unit is incorporated
into a partition of a program.

¢ Errors that are required to be detected at run time by the execution of an Ada program;

The corresponding error situations are associated with the names of the predefined excep-
tions. Every Ada compiler is required to generate code that raises the corresponding excep-
tion if such an error situation arises during program execution. - If such an error situation is
certain to arise in every execution of a construct, then an implementation is allowed (al-
though not required) to report this fact at compilation time.

e Bounded errors;

The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The
errors of this category are called bounded errors. The possible effects of a given bounded
error are specified for each such error, but in any case one possible effect of a bounded error
is the raising of the exception Program_Error.

o Erroneous execution.

In addition to bounded errors, the language rules define certain kinds of errors as leading to
erroneous execution. Like bounded errors, the implementation need not detect such errors
either prior to or during run time. Unlike bounded errors, there is no language-specified
bound on the possible effect of erroneous execution; the effect is in general not predictable.

An implementation may provide nonstandard modes of operation. Typically these modes would be
selected by a pragma or by a command line switch when the compiler is invoked. When operating in a
nonstandard mode, the implementation may reject compilation_units that do not conform to additional
requirements associated with the mode, such as an excessive number of warnings or violation of coding
style guidelines. Similarly, in a nonstandard mode, the implementation may apply special optimizations
or alternative algorithms that are only meaningful for programs that satisfy certain criteria specified by
the implementation. In any case, an implementation shall support a standard mode that conforms to the
requirements of this International Standard; in particular, in the standard mode, all legal compilation_units
shall be accepted.

Implementation Advice
If an implementation detects a bounded error or erroneous execution, it should raise Program_Error.

Classification of Errors 1.15
7

ISONEC 8652:1995(E)

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Mem-
bers of IEC and ISO maintain registers of currently valid International Standards.

ISO/MEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange.
ISO/IEC 1539:1991, Information technology — Programming languages — FORTRAN.

ISO 1989:1985, Programming languages — COBOL.

ISONEC 6429:1992, Information technology — Control functions for coded graphic character sets.

ISO/IEC 8859-1:1987, Information processing -— 8-bit single-byte coded character sets — Part/1: Latin
alphabet No. 1.

ISO/IEC 9899:1990, Programming languages — C.

ISO/MEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane.

1.2 Normative References
8

