
INTERNATIONAL
STANDARD

ISO/IEC
8652

Second edition
1995-02-15

Information technology - Programming
languages - Ada

Technologies de I’information - Langages de programmation - Ada

ISOIIEC 8652:1995(E)

Contents
Forewotd ... X
Introduction ... xi
1 l General~~..~~~......~.....................~........~...........~...~...............~........~.........~..~....~~ 1

l.lScope ...
l.l.lExtant ..
1.1.2Structure ...
1.1.3 Conformity of an Implementation with the Standard
1.1.4 Method of Description and Syntax Notation
1.1.5 Classification of Errors ...

1.2 Normative References ..
1.3Definitions ...

2. Lexical Elements . 9
2.1 Character Set.. ... 9
2.2 Lexical Elements, Separators, and Delimiters 10
2.3Identifiers .. 11
2.4 Numeric Literals .. 12

2.4.1 Decimal Literals ... 12
2.4.2 Based Literals ... 12

2.5 Character Literals ... 13
2.6 String Literals .. 13
2.7Commentr ... 14
2.8Pragmar ... 14
2.9ReservedWords .. 17

3. Declarations and Types*...*.................................... 19
3.1 Declaratlonr .. 19
3.2TypesandSubtypes ... 20

3.2.1 Type Declarations .. 21
3.2.2 Subtype Declaratlons ... 23
3.2.3 Classificatlon of Operations ... 24

3.3 Objects and Named Numbers ... 24
3.3.1 Object Declaratlons .. 26
3.3.2 Number Declarations ... 28

3.4DerivedTypesandClasser .. 20
3.4.1 Dwlvation Classes .. 31

o ISO/lEC 1995
All nghts reserved. Unless otherwrse specified, no part of thrs pubkation may be reproduced
or utilized in any form or by any means, electronrc or mechanical, including photocopyrng and
microfilm, without permrssion In writing from the publisher.

ISO/IEC Copyright Office l Case Postale 56 l CH-l 211 Geneve 20 l Switzerland
Printed in Swrtzerland

lSO/IEC 8652:1995(E)

35Scalarlypas ...
3.5.1 Enumeration Types ..
3.5.2 Character Types ...
3.5.3BooleanTypes ..
3.5.4IntegerTypes ...
3.5.5 Operatlons of Discrete Types ..
3.5.6RsalTypes ..
3.5.7FloatingPointTypes ...
3.5.8 Operations of Floating Point Types
3.5.9FixedPointTypes ..
3.5.10 Operations of Fixed Point Types

36ArrayTypes ..
3.6.1 Index Constraints and Discrete Ranges
3.6.2 Operations of Array Types ..
3.6.3StringTypes ..

3.7Discriminants.. ...
3.7.1 Discriminant Constraints ..
3.7.2 Operations of Discriminated Types

3.8RecordTypes ...
3.8.1 Varlant Parts and Discrete Choices

3.9 Tagged Types and Type Extensions ..
3.9.1TypeExtensions.. ...
3.9.2 Dispatching Operations of Tagged Types
3.9.3 Abstmct Typer and Subprograms

3.lOAccessTy~s ..
3.%OJ Incomplete Type Declaratlons ...
3.10.2 Opemtions of Access Types ..

3,llDeciaratlveParts.. ...
3.11.1 Completlons of Declarations ..

4. Names and Expressions ..
4.1Names ...

4.1.1IndexedComponents.. ...
4.1.2Slices.. ..
4.1.3SeiectedComponents ..
4.1.4Attributes ...

4.2Literals ...
4.3AggreIlates ...

4.3.1 Record Aggregates ..
4.3.2 Extension Aggregates ..
4.3.3 Array Aggregates ..

4.4Expressions ..
4.5 Operntors and Expression Evaluation ..

4.5.1 Logical Operators and Short-circuit Control Forms
4.5.2 Reiational Operators and Membership Tests
4.5.3 Binary Adding Operators ..
4.5.4 Unary Adding Operators ..
4.5.5MuitipiyingOpemtors ...
4.5.6 Highest Precedence Operators ;

4.6 Type Conversions ...
4.7 Qualified Expressions ..
4.8Allocators.. ..
4.9 Static Expressions and Static Subtypes

4.9,1 Staticallw Matchina Constraints and Subtwes

32
36
37
38
38
41
42
43
44
45
47
48
50
51
52
52
55
56
56
59
60
62
63
65
67
69
70
73
74
75
75
76
77
78
79
80
81
82
83
84
87
08
89
90
93
94
94
96
97

101
102
103
105

lSO/lEC 8652: 1995(E)

9.7.1Sel~tiveAccept ... 174
9.7.2TimedEntryCalls.. .. 176
9.7.3ConditionaiEntryCaiis ... 176
9.7.4AsynchronousTransferofControl 177

98AbotiofaTask-AbortofaSequenceofStatements.. 178
9,gTaskandEntryAttributes ... 179
9.10 Shared Variables ... 180
9.11 Exampie of Tasking and Synchronkation 161

10. Program Structure and Compilation Issues .. 183
lO.lSeparateCompilation ... 183

10.1.1 Compilation Units - Library Units 183
10.1.2 Context Clauses - With Clauses 1~
10.1.3 Subunits of Compilation Units .. 186
10.1.4 The Compilation Process .. 188
10.1.5 Pragmas and Program Units .. 189
10.1.6 Environment-Level Visibility IRules 190

10.2 Program Execution ... 191
10.2.1 ElaborationControl ... 193

11. Exceptions .. 195
ll.lExceptionDeclarations.. .. 195
11.2ExceptionHandlers.. ... 195
11.3 Raise Statements ... 196
11.4ExceptionHandllng.. ... 197

11.4.1 The Package Exceptions ... 197
11.4.2 Example of Exception Handling 199

11SSuppressingChecks.. .. 200
11.6 Exceptions and Optimization ... 202

12. Generic Units .. 205
12.1GenericDeclaratlons.. .. 205
12.2GenericBodies .. 206
12.3GenericInstantiation.. .. 207
12.4FormalObjects .. 210
12.5FormalTypes.. .. 211

12.51 Formal Private and Derived Types 212
12.5.2 Formal ScalarTypes ... 213
12.5.3FormalArrayTypes ... 214
12.5.4FormalAccessTypes.. .. 215

12.6 Formal Subprograms ... 215
12.7FormalPackalles ... 217
12.8ExampleofaGenericPackage ... 217

13. Representation Issues ... 219
13.1 Representationltems ... 219
13.2PragmaPack .. 221
13.3 Representation Attributes ... 222
13.4 Enumeration Representation Clauses 227
13.5RecordLayout ... 228

13.5.1RecordRepresentationClauses .. 228
13.5.2StoragePlaceAttributes ... 230
13.5.3BltOrdering.. .. 230

13.6ChangeofRepresentation ... 231
13.7ThePackageSystem.. .. 232

13.7.1ThePackageSystem.Storage~Elements.. 234

lSO/lEC 8652:1995(E)

13.7.2 The Package System.Address-To-Access Conversions
13.8MachineCodeinsertions.., .

... 234
235

13.9UncheckedTypeConversions .. 236
13.9.1DataValidity.. ... 237
13.9.2TheValidAttribute.. .. 238

13.10 Unchecked Access Vaiue Creation ... 238
l3.11StorageManagement .. 239

13.11 .l The Max Size-In-Stotage-Elements Attribute
1~.11.2UncheckedStorageDeallocation

.......................... 242
..................................... 242

13.1 fl .3 Pragma Conttoll ... 243
13.12 Pragma Restrittions ... 243
13.13Streams ... 244

13.13.1 The Package eams .. 244
13.13.2 Stream-Orient s .. 245

13.14F~~PingRuies .. 247

redefined Language Enwiron ... 251
.l The Package Standard .. 252

A.2ThePackageAda ... 255
ng .. 255

... 256

:::::::.::::::::::::::::::::::::::::::
256
258

§tring Handling ... 262
A.4.l The Package Strings ... 263
A,4.2 The Package Strings.Maps .. 263

.4.3 Fixed-Length String Handling .. 266
ounded-Length String Handling 273
nbounded-Length String Handling 278

A.4.6 String-Handling Sets and Mappings 283
A.4.7 Wide-String Handling .. 283

A.5 The Numerics Packages .. 285
A.5.1 Elementary Functionr .. 266
A.5.2 Random Number 6eneration .. 289
A.5.3 Attributes of Floating Point 8~~~~.~~~~~.~..~~.~.~.~~~~~.~.~..~..* . . 293
A”5.4 Attributes of Fixed Point Ty 297

A.6lnput-Output:: 297
A.7 Extemal Files and File Objects .. 298
A.8 Sequentiai and Direct Fiies .. 299

A.8;1 The Generic Package uentialJ0 299
A.8.2 File Management .. 300
A.8.3 Sequential Input-Output Operations 302
A.8.4 The Generic Package Direct-IO .. 303
A,8.5 Direct Input-Output Operations .. 304

A.9 The Generic Package StorageJO .. 305
A.lOTextinput-Output .. 305

A.10.1 ThePackageText-IO .. 307
19.10.2 Text File Management ... 311
A.10.3 Defauit Input, Output, and Enor Files 312
A.10.4 Specification of Line and Page Lengths 313

vi

A.10.5 Operations on Columns, Limes, and Page8 314
A.10.6GetandPutProcedures‘....‘...... 317

SO/lEC 8652:1995(E)

A.lO.7 Input-Output of Characters and Strings
A.10.8 Input-Output for Integer Types ..
A.10.9 Input-Output for Real Types ..
A.10.10 Input-Output for Enumeration Types

A.11 WideText Input-Output ...
A.12 Stream Input-Output ..

A.12.1 The Package Streams.Stream-IO
A.12.2 The Package Text lO.Text Streams
A.12.3 The Package WideTextJÖ.Text-Streams ...

A.13ExceptionsinInput-Output ..
A.14FileSharing ...
A.l5ThePackageCommand-Line ..

6. Interface to Other Languages ...
B.l interfacing Pragmas ...
8.2ThePackageInterfaces ..
B.3 Interfacing with C ...

8.3.1 The Package Interfaces.C.Strings
B.3.2 The Generic Package Interfaces.C.Pointers

8.4 Interfacing with COBOL ..
B.5 interdacing with Fortran ..

C. Systems Programming ..
C.l Access to Machine Operations ..
C.2 Required Representation Support ...
C.3 Interrupt Support ...

C.3.1 Protected Procedure Handiers ...
C.3.2 The Package Interrupts ...

C.4 Preelaboration Requirements ...
C.5 Pragma Dlscard-Names ..
6.6 Shared Variable Controi ..
C.7 Task identific&ion and Attributes ..

C.7.1 The Package Task-ldentification
6.7.2 The Package Task-Attributes ..

D. Real-Time Systems ..
D.lTaskPrioritias ..
0.2 Priority Scheduiing ..

0.2.1 The Task Dispatching Model ..
0.2.2 The Standard Task Dispatching Policy

0.3 Priority Ceiling LocMng ..
D.4 Entry Queuing Policies. ..
D.5 DynamicPriorities ..
0.6 Prwmptive Abort ...
0.7 Tasking Restrittions ...
0.8 Monotonic Time ..
D.9DeiayAccunrcy ...
D.lOSynchronousTaskControl ...
0.11 Asynchronous Task Control ..
0.12 Other Optimizations and Determinism Rules

E. Distributed Systems ..
E.l Partitions ..
E.2 Categorization of Library Units ..

318
320
322
325
326
326
326
328
329
329
330
331

333
333
336
337
341
344
347
353

357
357
358
358
360
362
364
365
365
367
367
368

371
371
373
373
375
376
378
379
380
381
382
386
387
387
388

391
391
393

vii

lSO/lEC 8652:1995(E)

E.2.1 Shared Passive Library Units .. 394
E.2.2 Remote Types Library Units ... 394
E.2.3 Remote Cali Interface Library Units 395

E.3 Consistency of a Distributed System ... 396
E.4 Remote Subprogram Calls .. 397

E.4.1 Pragma Asynchronous ... 396
E.4.2 Example of Use of a Remote Access-to=Class-Wide Type 399

E.5 Partition Communication Subsystem ... 461
F. Information Systems .“““““““.““““““““‘.“‘“““““““““““““““.““.“““““““““ 403

F.l Machine Radix Attribute Definition Clause
F.2ThePackageDecimal

.................................... 403
.. 404

F.3 Edited Output for Decimal Types ... 405
F.3.1 Picture String Formatlon .. 466
F.3.2 Edlted Output Generation ... 409
F.3.3 The Package Text-lO.Editing .. 414
F.3.4 The Package Wlde-Text-lO.Editing 417

G. Numerics .. 419
G.l Complex Arithmetic ... 419

G.l.l CompiexTypes ... 419
G.1.2 Complex Elementary Functions .. 424
G.1.3ComplexInput-Gutput .. 427
G.1.4The Package Wide_Text~lO.Complex~lO 429

G.2NumericPerformanceRequirements .. 430
G.2.1 Model of Floating Point Arithmetic 430
G.2.2 Model-Oriented Attributes of Floating Point Types 431
G.2.3 Model of Fixed Point Arithmetic .. 432
G.2.4 Accuracy Requirements for the Elementary Functionr 434
G.2.5 Performance Requlrements for Random Number Generation 436
G.2.6 Accuracy Requirements for Complex Arithmetic 436

H. Safety and Security .. 439
H.1 Pragma Normalks-Scalars ... 439
H.2 Documentation of Implementation Decisions 440
H.3 Reviewable Object Code ... 440

H.3.1 Pragma Reviewable .. 440
H.3.2 Pragma inspection Point

H.4 Safety and Security Restr&tions ..
441
442

J. Obsolescent Features .. 445
J.l Renamings of Ada 83 Library Units ... 445
3.2 Allowed Replacements of Characters ... 445
J.3 Reduced Accuracy Subtypes .. 446
3.4 The Constrained Attribute .. 446
J.SASCll .. 447
J.6 Numeric Error
J.7AtCiausÖs

.. 447
... 447

J.7.1 Interrupt Entries .. ; 448
J.8ModClauses ... 449
J.gTheStorage-Slze Attribute .. 449

K. Language-Defined Attributes .. 451
L. Language-Defined Pragmas .. 465

ISOIIEC 8652: 1995(E)

M. Implementation-Defined Characteristics ‘*‘~‘@“*“.*~“~‘~~“‘*..*....,,....,‘~~~,~~~,“,“““‘ 467
N. Glossary~...‘....*~.......*9~*~“~‘*‘*“***~“““**“*~*~“““‘*‘**‘~*“““.“.“......,‘,‘,““‘~“,~““~ 473
P. Syntax Summqf“‘.“.‘.“...‘.‘.“‘..‘.‘..“.“‘.“‘.““.*‘...‘...*..“~~““‘~‘~“““‘~ 477
Index “,‘,*‘~“,,,~~,“~‘,““‘,..‘.~...‘.‘.““““**‘.‘~.‘~..“““““*“““*““““..“~...““.,.““...““‘.,.,‘,“, 501

ix

iSO/lEC 8652:1995(E)

Foreword
ISO (the International Organkation for Standardkation) and IEC (the International Electrotechnical Com-
rnission) ferm the specialized system for worldwide standardization. National bedies that are members of

C participate in the development of International Standards through technical committees es-
tablished by the respective Organkation to deal with particular Felds of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international orgarkations,
govemmental and non-govemmental, in liaison with ISO and IEC, aIso take part in the werk.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEiC JTC 1. Dr& International Smdards adopted by the joint technical committee are circulated to
national bodies for voting. Publication as an International Standard requires approval by at least 75 % sf
the national botlies casting a vote.

International Standard ISO/IEC $652 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information Technology.

This second edition cancels and replaces the fnst edition (ISO 8652: 1987), of which it constitutes a
technical revision.

hnexes A to J form an integral part of this International Standard. Annexes K ts P are for information
only ‘

Foreword
X

lSO/lEC 8652:1995(E)

Introduction
This is the Ada Reference Manual.

Other available Ada documents include:
l Rationale for the Ada Programming Language - 1995 edition, which gives an introduction

to the new features of Ada, and explains the rationale behind them. Programmers should
read this fxst.

l Changes to Ada - 1987 to 1995. This document lists in detail the changes made to the 1987
edition of the Standard.

l The Annotated Ada Reference Manual @ARM). The AARM contains all of the text in the
RM%, plus various annotations. It is intended primarily for Compiler writers, Validation test
writers, and others who wish to study the fine details. The annotations include detailed
rationale for individual rules and explanations of some of the more arcane interactions among
the rules.

Design Goals
Ada was originally designed with three overriding concems: program reliability and maintenance, pro-
gramming as a human activity, and efficiency. This revision to the language was designed to provide
greater flexibility and extensibility, additional control over storage management and synchronization, and
standardized packages oriented toward supporting important application areas, while at the sarne time
retaining the original emphasis on reliability, maintainability, and efficiency.

The need for languages that promote reliability and simplify maintenance is weII established. Hence
emphasis was placed on program readability over esse of writing. For example, the rules of the language
require that program variables be explicitly declared and that their type be specified. Since the type of a
variable is invariant, Compilers tan ensure that operations on variables are compatible with the properties
intended for objects of the type. Furthermore, error-prone notations have been avoided, and the Syntax of
the language avoids the use of encoded forms in favor of more English-like constructs. FinaIly, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the Same degree of checking between units as within a
mit.

Concem for the human programmer was aIso stressed during the design. Above all, an attempt was made
to keep to a relatively smalI number of underlying concepts integrated in a consistent and systematic way
while continuing to avoid the pitfaIls of excessive involution. The design especialiy aims to provide
language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized and
distributed. Consequently, the ability to assemble a program from independently produced Software
components continues to be a centraI idea in the design. The concepts of packages, of private types, and
of generic units are directly related to this idea, which has’ ramifications in many other aspects of the
language. An allied concem is the maintenance of programs to match changing requirements; type exten-
sion and the hierarchical library enable a program to be modified while minimizing disturbance to exist-
ing tested and trusted components.

No language tan avoid the Problem of efficiency. Languages that require over-elaborate Compilers, or
that lead to the inefficient use of storage or execution time, forte these inefflciencies on all machines and
on alI programs. Every construct of the language was examined in the light of present implementation

Introduction
xi

ISOIIEC 8652:1995(E)

techniques. &y proposed construct whose implementation was unclear or that required excessive
machine resources was rejected.

Language Summary
An Ada program is composed of one or more program units. Program units may be subprograms (which
defme executable algorithms), packages (which defme collections of entities), task units (which defme
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms). Esch
program unit normally consists of two Parts: a specification, containing the information that must be
visible to other units, and a body, containing the implementation details, which need not be visible to
other units. Most program units tan be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent Software components.

An Ada program will normally make use of a library of program units of general Utility. The language
provides means whereby individual organizations tan construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a Subsystem into individual
components. The text of a separately compiled program unit must name the library units it requires.

Program Units

A subprogram is the basic -unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will retum a result.

A package is the basic unit for defming a collection of logically related entities. For example, a package
tan be used to define a set of type declarations and associated operations. Portions of a package tan be
hidden fiom the User, thus allowing access only to the logical properties expressed by the package
specification. _ ,

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and
Child units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently
with those of other tasks. Such taslcs may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a Single processor. A task unit may defme either a Single executing task or a
task type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use. of data shared
between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing protocols
tan be defmed. A protected Operation tan either be a subprogram or an entry. A protected entry specifies
a Boolean expression (an entry barrier) that must be true before the body of the entry is executed. A
protected unit may defme a Single protected Object or a protected type permitting the creation of several
similar objects.

Declarations and Statements

Introduction
Xii

ISO/lEC 8652: 1995(E)

The body of a program unit generally contains two parts: a declarative part, which defmes the logical
entities to be used in the program unit, and a sequence of Statements, which defmes the execution of the
program unit.

The declarative part associates names with declared entities. For example, a name may denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and Parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

The sequence of Statements describes a sequence of actions that arc to be performed. The Statements arc
executed in succession (unless a transfer of control Causes execution to continue from another place).

An assignment Statement changes the value of a variable. A procedure cal1 invokes execution of a
procedure after associating any actual Parameters provided at the call with the corresponding formal
Parameters.

Case Statements and if Statements allow the selection of an enclosed sequence of Statements based on the
value of an expression or on the value of a condition.

The loop Statement provides the basic iterative mechanism in the language. A loop Statement specifies
that a sequence of Statements is to be executed repeatedly as directed by an iteration scheme, or until an
exit Statement is encountered.

A block Statement comprises a sequence of Statements preceded by the declaration of local entities used
by the Statements.

Certain Statements are associated with concurrent execution. A delay Statement delays the execution of a
task for a specified duration or until a specified time. An entry cal1 Statement is written as a procedure
cal1 Statement; it requests an Operation on a task or on a protected Object, blocking the caller until the
Operation tan be performed. A called task may accept an entry call by executing a corresponding accept
Statement, which specifies the actions then to be performed as part of the rendezvous with the calling task.
An entry call on a protected Object is processed when the corresponding entry barrier evaluates to true,
whereupon the body of the entry is executed. The requeue Statement permits the Provision of a Service as
a number of related activities with preference control. One form of the select Statement allows a selective
wait for one of several alternative rendezvous. Other forms of the select Statement allow conditional or
timed entry calls and the asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the Statements of a program unit tan be textually followed by exception handlers
that specify the actions to be taken when the error Situation arises. Exceptions tan be raised explicitly by
a raise Statement.

Data Types

Every Object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementar-y types (comprising enumeration, numeric, and ac-
cess types) and composite types (including array and record types).

Introduction . . .
Xlll

ISO/lEC 8652:1995(E)

h enumeration type defmes an ordered set of distinct enumeration literals, for example a list of states or
a alphabet of characters. The enumeration types Boolean, Character, and Wide-Character Xe
predefmed.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating Point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefmed.

Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an Object with indexed components of the Same
type. A record is an Object with named components of possibly different types. Task and protected types
are also forms of composite types. The array types String and Wide-String are predefmed.

Record, task, and protected types may have special components called discriminants which parameter-&
the type. Variant record structures that depend on the values of d.iscriminants tan be defined within a
record type.

Access types allow the construction of linked data structures. A value sf an access type represents a
reference to an Object declared as aliased or to an Object created by the evaluation of an allocator. Several
variables of an access type may designate the same Object, and components of one Object may designate
the Same or other objects. Both the elements in such linked data structures and their relation to other
elements tan be altered during program execution. Access types also permit references to subprograms to
be stored, passed as Parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A private type tan be defmed in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details that
are extemally irrelevant are then only available within the package and any Child units.

From any type a new type may be defmed by derivation. A type, together with its derivatives (both direct
and indirect) form a derivation class. Class-wide operations may be defmed that accept as a Parameter an
Operand of any type in a derivation class. For record and private types, the derivatives may be extensions
of the parent type. Types that support these Object-oriented capabilities of class-wide operations and type
extension must be tagged, so that the specific type of an Operand within a derivation class tan be iden-
tified at run time. When an Operation of a tagged type is applied to an Operand whose specific type is not
known until run time, implicit dispatching is performed based on the tag of the Operand.

The concept of a tvpe is further refmed by the concept of a subtype, whereby a user tan constrain the set
of allowed values-of a type. Subtypes tan be used to defme subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Representation clauses tan be used to specify the mapping between types and features of an underlying
machine. For example, the user tan specify that o’bjects of a given type must be represented with a given
number of bits, or that the components of a record are to be represented using a given storage layout.
Other features allow the controlled use of low level, nonportable, or implementation-dependent aspects,
including the direct insertion of machine Code.

Intrtiuction

ISO/lEC 8652: 1995(E)

The predefmed environment of the language provides for input-output and other capabilities (such a,s
shg manipulation and random number generation) by means of Standard library packages. Input-output
is suppor-ted for values of userdefmed as weil as of predefmed types. Standard means of representing
values in display ferm are also provided. Other Standard library packages are defmed in annexes of the
Standard to support Systems with specialized requirements.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic Parameters tan be types and subprograms (as well as objects and packages)
and so allow general algorithms and data structures to be defined that are applicable to all types of a given
class.

Language Changes
This International Standard replaces the first edition of 1987. In this edition, the following major lan-
guage changes have been incorporated:

0 Support for Standard 8-bit and 16.bit Character Sets. See Section 2, 3.5.2, 3.6.3, A.l, A.3, and
A4 . .

l Object-oriented pro gramming with run-time polymorphism. See the discussions of classes,
derived types, tagged types, record extensions, and private extensions in clauses 3.4, 3.9, and
7.3. See also the new forms of generic formal Parameters that arc allowed by 12.5.1, ‘ ‘For-
mal Private and Derived Types” and 12.7, “Formal Packages”.

0 Access types have been extended to allow an access value to designate a subprogram or an
Object deckt-ed by an Object declaration (as opposed to just a heapallocated Object). See
3.10.

l Efficient data-oriented synchronization is provided via protected types. See Section 9.

l The library units of a library may be organized into a hierarchy of parent and Child units. See
Section 10.

l Additional support has been added for interfacing to other languages. See Annex B.
a T’he Spe&dized Needs Annexes have been added to provide specific support for certain

application areas:
l Annex C, “Systems Programming”

l Annex D, ‘ ‘Real-Time Systems”

0 Annex E, ’ ‘Distributed Systems”

l Annex F, “Information Systems”

l Annex G, “Numerics”

l Annex H; ’ ‘Safety and Security”

Introduction
xv

ISO/lEC 8652: 1995(E)

Instructions for Comment Submission
Informal comments on this International Standard may be sent via e-mail to ada-comment@sei.cmu.edu. If
appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format:

!topic Title s ummurizing comment
! reference RM95-SS. ss(pp)
!from Author Name yy-mm-dd
!keywords keywords related to topic
!discussion

text of discussion

where ss.ss is the section, clause or subclause number, pp is the Paragraph number where applicable, and
yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line.

Multiple comments per e-mail message are acceptable. Please use a descriptive “Subject” in your e-mail
message.

When correcting typographical errors or making rninor wording suggestions, please put the correction
directly as the topic of the comment; use Square brackets [] to indicate text to be omitted and curly braces
(} to indicate text to be added, and provide enough context to make the nature of the Suggestion self-
evident or put additional information in the body of the comment, for example:

hopic [c] {C } haracter
hopic it[‘]s meaning is not defmed l

Formal requests for interpretations and for reporting defects in this International Standard may be made in
accordance with the ISO/IEC JTC 1 Directives and the ISO/IEC JTC USC 22 policy for interpretations.
National Bodies may submit a Defect Report to ISO/IEC JTC l/SC 22 for resolution under the JTC 1
procedures. A response will be provided and, if appropriate, a Technical Corrigendum will be issued in
accordance with the procedures.

Introduction

.

INTERNATIONAL STANDARD

Information technology
lknguages

- Programming
- Ada

Section 1: General
Ada is a programmin g language designed to support the construction of long-lived, highly reliable
Software Systems. The language includes facilities to defme packages of related types, objects, and

. operations. The packages may be parameterized and the types may be extended to support the construc-
tion of libraries of reusable, adaptable Software components. The operations may be implemented as
subprograms using conventional sequential control structures, or as entries that include sync-hronization
of concurrent threads of control as part of their invocation. The language treats modularity in the physical
sense as weil, with a facility to support separate compilation.

The language includes a complete facility for the support of real-time, concurrent programm!ng. Errors
tan be signaled as exceptions and handled explicitly. The language also covers systems programming;
this requires precise control over the representation of data and access to system-dependent properties.
Finally, a preciefined environment of Standard packages is provided, including facilities for, among
others, input-output, string manipulation, numeric elementary functions, and random number generation.

1.1 scope
This International Standard specifies the form and meaning of programs written in Ada. Its purpose is to
promote the portability of Ada programs to a variety of data processing systems.

1 .l .l Extent
This International Standard specifies:

l The form of a program written in Ada;

l The effect of translating and executing such a program;

General 1
1

ISO/lEC 8652: 1995(E)

l ne manner in which program units may be combined to ferm Ada programs;

l The language-defmed library units that a conforming implementation is required to supply;

o The permissible variations within the Standard, and the manner in which they are to be
documented;

Q These violations of the Standard that a conforming implementation is required to detect, and
the effect of attempting to translate or execute a program containing such violations;

0 Those violations of the Standard that a conforming implementation is not required to detect.

This International Standard does not specify:
* The means whereby a program written in Ada is transformed into Object Code executable by a

processor;
l The rneans whereby translation or execution of programs is invoked and the executing units

arc controlled;

0 The size or speed of the Object Code, or the relative execution Speed sf different language
constructs;

a The form or contents of any listings produced by implernentations; in particular, the form or
contents of error or warning messages;

a The effect of unspecified execution.
8 The size of a program or program unit that will exceed the capacity of a particular conform-

ing implementation.

1 .l.% Structute
This International Standard contains thirteen sections, fourteen annexes, and an index.

The core of the Ada language consists of:
0 Sections 1 through 13

0 Annex A, “Predefmed Language Environment”

* Annex B, “Interface to Other Languages”

0 Annex J, “Obsolescent Features”

The following Specialized Needs Annems define features that are needed by certain application areas:
a Annex C, “Systems Programming”

l Annex D, “Real-Time Systems”

e Annex E, “Distributed Systems”

0 Annex F, “Information Systems”

l Annex G, “Numerics”

l Annex H, “Safety and Security”

The core language and the Specialized
the items listed below is informative:

Needs Annexes arc norkative, except that the material in each of

l Text under a NOTES or Examples heading.

1.1.1 Extent
2

ISO/lEC 8652: 1995(E)

l Esch clause or subclause whose title starts with the word “Example” or “Examples”.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

The following Annexes arc informative:
l Annex K, ‘ ‘Language-Defined Attributes”

l Annex L, ‘ ‘Language-Defined Pragmas”

l Annex M, ‘ ‘Implementation-Defined Characteristics”

l Annex N, “Glossar-y”

l Annex P, “Syntax Summary”

Esch section is divided into clauses and subclauses that have a common structure. Esch section, clause,
and subclause first introduces its subject. After the introductory text, text is labeled with the following
headings:

Syntax rules (indented).

Name Resolution Rules

Compile-time rules that are used in name resolution, including overload resolution.

Rules that are enforced at compile time. A construct is legal if it obeys all of the Legality Rules.

s&ticsemaAtiu

A definition of the compile- time effect of each construct.

Post-Compilasion Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal
and it obeys all of the Post-Compilation Rules.

A definition of the run-tirne effect of each

Situations that result in bounded (run-time)

DyMmic
construct.

Scmanticj

Bowuied (Rnn-Ti) Emm

errors (see 1.1 S).

Situations that result in erroneous execution (see 1.1 S).

Additional requirements for conforming
Impleme~n Requimnents

implementations.

Documentation requirements for conforming implementations.
wmtation Requirements

Met&3

Metrics that are specified for the timekpace properties of the execution of certain language constructs.

StlUCtUIZ 1.1.2
3

--

ISO/lEC 8652: 1995(E)

Impiemenfation Pcrmissions

Additional pemissions given to the implementer.

Impkmentation Advicc

Optional advice given to the implementer. The word “should” is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given recommen-
dation is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples illustrate the possible forms of the constructs described. This material is informative.

1.1.3 Conformity of an Implementation with the Standard
impkmentation Rcquinments

A conforming implementation shall:
l Translate and correctly execute legal programs written in Ada, provided that they are not so

large as to exceed the capacity of the implementation;

l Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

l Identify all programs or
International Standard;

program units that contain errors whose detection is required by this

l Supply all language-defined library units required by this International Standard;
0 Contain no variations except those explicitly permitted by this International Standard, or

those that are impossible or impractical to avoid given the implementation’s execution en-
vironment;

l Specify all such variations in the manner prescribed by this International Standard.

The extemal e$ect of the execution of an Ada program is defmed in terms of its interactions with its
extemal environment. The folIowing are defined as extemal iriteractions:

l Any interaction with an extemal file (see A.7);

l The execution of certain code-statements (sec 13.8); which code-statements Cause extemal
interactions is implementition defmed.

l Any cal1 on an imported subprogram (see Annex B), including any Parameters passed to it;

* Any result retumed or exception propagated from a main subprogram (see 10.2) or an ex-
ported subprogram (sec Annex B) to an extemal caller;

l Any read OP update of an atomic or volatile Object (sec C.6);

l The values of irnported and exported objects (see Annex B) at the time of any other inter-
action with the extemal environment.

A conforming implementation of this International Standard shall produce for the execution of a given
Ada program a set of interactions with the extemal environment whose Order and timing arc consistent
with the defmitions and requirements of this International Standard for the semantics of the given
Program*

1.1.2 StNCturt
4

ISO/lEC 8652: 1995(E)

an implementation that conforms to this Standard shall support each capability required by the core
language as specifkd. In addition, an implementation that conforms to this Standard may conform to one
or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex means that
each capability required by the Annex is provided as specified.

An implementation conforming to this International Standard may provide additional attributes, library
units, and pragmas. However, it shall not provide any attribute, library unit, or pragma having the same
name as an attribute, library unit, or pragma (respectively) specified in a Specialized Needs Annex unless
the provided construct is either as specified in the Specialized Needs Annex or is more limited in
capability than that required by the Annex. A program that attempts to use an unsupported capability of
an Annex shall either be identified by the implementation before run time or shall raise an exception at
run time.

Documcntation Rcquirewwnu

Certain aspects of the semantics are defmed to be either implementation defined or unspecified. In such
cases, the set of possible effects is specified, and the implementation may choose any efkct in the set.
Implernentations shall document their behavior in implementationdefined situations, but documentation
is not required for unspecified situations. The implementation-defned characteristics are summarized in
Annex M.

The implementation may choose to document implementationdefined behavior either by documenting
what happens in general, or by providing some mechanism for the user to determine what happens in a
particular case.

If an implementation detects the use of an unsupported Specialized Needs Anntx feature at run time, it
should raise Program-Error if feasible.

If an implementation wishes to provide implementation-defmed extensions to the functionality of a
languagedefmed library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the capabilities
required by a Specializcd Needs Annex without supporting all required capabilities.

1.1.4 Method of Description and Syntax Notation
The ferm of an Ada program is described by means of a tontext-fiee Syntax tonether with context- Y

dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defrning
construct and thc composition rules for constructs.

The tontext-free Syntax of the language is described using a simple variant of
particular:

both the effects of each

Backus-Naur Form. In

l Lower case words in a sans-serif font, some containing embedded underlines, arc used to
denote syntactic categories, for example:

case-Statement

l Boldface words arc used to denote reserved words, for example:

Conformity of an Implementation with the Standard 1.1.3
5

--

ISO/lEC 8652: 199S(E)

l Square brackets enclose optional items. Thus the WO following rules arc equiv&nt.

retum-Statement ::= return [expression];
retum-statement ::= return; I retum expression;

* Curly brackets enclose a repeated item. The item may appear zero or more times; the rep&
tions occur from lefi to right as with an equivalent lefi-recursive rule. Thus the two follow-
ing rules are equivalent.

term ::= factor { multiplying-Operator factor}
term ::= factor I term multiplying-Operator factor

l A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it Stands for itself:

constraint ::= scalar constraint I composite constraint
discrete-choice-list’*- . l - discretechoice (I discretechoice}

l If the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey some
semantic information. For example wbvpe-name and tark_name are both equivalent to
name alone.

A syntactic category is a nonterminal in the grammar defmed in BNF under “Syntax.” Names of
syntactic categories are set in a different font, like-this..

A conw-uct is a piece of text (explicit or implicit) that is an instance of a syntactic category defmed under
“Syntax.”

A comtituent of a construct is the construct itself, or any construct appearing within it.

Whencver the run-time semantics defrnes certain actions to happen in an arbitrav Order, this means that
the implementation shall arrange for these actions to occur in a way that is equivalent to some sequential
Order, following the rules that result from that sequential Order. When evaluations are defmed to happen
in an arbitrary Order, with conversion of the results to some subtypes, or with some run-time Checks, the
evaluations, conversions, and Checks may be arbitrarily interspersed, so long as each expression is
evaluated before converting or checking its value. Note that the effect of a program tan depend on the
Order Chosen by the implementation. This tan happen, for example, if two actual Parameters of a given
cal1 have side effects.

NQTES
3 The Syntax rules describing structured constructs are presented in a ferm that corresponds to the recommended
paragraphing. For example, an ~~&temmt is defined as:

if,staWnent : : =
ifcmndiäonthua

sequence,of,%tatements
{almif corumn thaa

s~of~stat-}
[Oh.

sequence~ofgtatem]
and if;

4 The line breaks and indentation in the syntax rules indicate the recommended he
comqxmding constructs . The preferred places for other he breaks are afkr sernicolons.

breaks and indentation in the

1.1.4 Method of Dcscription and Syntax Notation
6

lSO/lEC 8652: 1995(E)

1 .1.5 Classification of Errors
Impkmentation Rcquirewwnts

The language definition classifies errors into several different categories:
l Errors that arc required to be detected Prior to run time by every Ada implementation;

These errors correspond to any Violation of a rule given in this International Standard, other
thm those liste-d below. In particular, Violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error
is not a legal Ada program; on the other hand, the fact that a program is legal does not mean,
per se, that the program is free from other forms of error.

The rules are Wer classified as either compile time rules, or post compilation rules,
depending on whether a Violation has to be detected at the time a compilation unit is sub-
mitted to the Compiler, or may be postponed until the time a compilation unit is incorporated
into a partition of a program.

* Errors that are required to be detected at run time by the execution of an Ada program;

The corresponding error situations are associated with the names of the predefmed excep-
tions. Every Ada Compiler is required to generate code that raises the corresponding excep
tion if such an error Situation arises during program execution. If such an error Situation is
certain to arise in every execution of a construct, then an implementation is allowed (al-
though not required) to report this fact at compilation time.

l Bounded errors;
The language rules defme certain kinds of errors that need not be detected either Prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The
errors of this category arc called bmnded errors. The possible effects of a given bounded
error are specified for each such error, but in any case one possible effect of a bounded error
is the raising of the exception Program-Error.

l Erroneous execution.

In addition to bounded errors, the language rules defme certain kinds of errors as leading to
erroneoscs execution. Like bounded errors, the implementation need not detect such errors
either Prior to or during run time. Unlike bounded errors, there. is no language-specified
bound on the possible effect of erroneous execution; the effizct is in general not predictable.

Implemcn&tion Pcrmifsions

An implementation may provide rwnstandkrd rnudes of Operation. Typically these modes would be
selected by a pragma or by a command line switch when the Compiler is invoked. When operating in a
nonstandard mode, the implementation may reject compilation-units that do not conform to additional
requirements associated with the mode, such as an excessive nunaber of wamings or Violation of coding
style guidelines. Similarly, in a nonstandard mode, the implementation may apply special optimizations
or alternative algorithms that are only meaningful for programs that satisfy certain criteria specified by
the implementation. In any case, an implementation shall support a stanhrd mode that conforms to the
requirements of this International Standard; in particular, in the Standard mode, all legal compilation-units
shall be accepted.

Impkmentotion Advke

If an implementation detects a bounded error or erroneous execution, it should raise Program-Error.

Classification of Errors 1.1.5
7

IsonEC 8652: 1995(E)

1.2 Normative References
The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All Standards
arc subject to revision, and Parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the Standards indicated below. Mem-
bers of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 646: 199 1, Information technology - ISO 7-bit coded Character set for information interchunge.

ISOIIEC 1539: 1991, Information technology - Programming languuges - FORTRAN.

ISO 1989: 1985, Programming languages - COBOL.

ISOIIEC 6429: 1992, Information technology - Control finctions for coded graphic Character Sets.

ISOIIEC 8859- 1: 1987, Inforhation processing - a-bit Single-byte coded churacter sets - Part 1: Latin
alphabet No. 1.

ISOIX 9899: 1990, Programming languages - C.

ISOIIEC 10646- 1: 1993, Informution technology - Universal Multiple-Octet Coded Character Set (WS)
- Part 1: Architecture and Basic Multilingual Plane.

1.3 Definitions
Terms are defined throughout this International Standard, indicated by italic type. Terms explicitly
defined in this International Standard are not to be presumed to refer implicitly to similar terms defmed
elsewhere. Terms not defmed in this International Standard are to be interpreted according to the
Webster’s Third New International Dictionary of the English Languuge. Informal descriptions of some
terms arc also given in Annex N, ‘ ‘Glossary ’ ’ .

12 . Normative References
8

